

Local Interpretable Model-Agnostic Explanations (lime)

In this page, you can find the Python API reference for the lime package (local interpretable model-agnostic explanations).
For tutorials and more information, visit the github page [https://github.com/marcotcr/understanding-ml].

	lime package
	Submodules

	lime.lime_tabular module

	lime.lime_text module

	lime.discretize module

	lime.explanation module

	lime.lime_base module

Indices and tables

	Index

	Module Index

	Search Page

lime package

Submodules

lime.lime_tabular module

Functions for explaining classifiers that use tabular data (matrices).

	
class lime.lime_tabular.LimeTabularExplainer(training_data, mode='classification', training_labels=None, feature_names=None, categorical_features=None, categorical_names=None, kernel_width=None, verbose=False, class_names=None, feature_selection='auto', discretize_continuous=True, discretizer='quartile')

	Bases: object

Explains predictions on tabular (i.e. matrix) data.
For numerical features, perturb them by sampling from a Normal(0,1) and
doing the inverse operation of mean-centering and scaling, according to the
means and stds in the training data. For categorical features, perturb by
sampling according to the training distribution, and making a binary
feature that is 1 when the value is the same as the instance being
explained.

Init function.

	Parameters:	
	training_data – numpy 2d array

	mode – “classification” or “regression”

	training_labels – labels for training data. Not required, but may be
used by discretizer.

	feature_names – list of names (strings) corresponding to the columns
in the training data.

	categorical_features – list of indices (ints) corresponding to the
categorical columns. Everything else will be considered
continuous. Values in these columns MUST be integers.

	categorical_names – map from int to list of names, where
categorical_names[x][y] represents the name of the yth value of
column x.

	kernel_width – kernel width for the exponential kernel.

	None, defaults to sqrt (If) –

	verbose – if true, print local prediction values from linear model

	class_names – list of class names, ordered according to whatever the
classifier is using. If not present, class names will be ‘0’,
‘1’, ...

	feature_selection – feature selection method. can be
‘forward_selection’, ‘lasso_path’, ‘none’ or ‘auto’.
See function ‘explain_instance_with_data’ in lime_base.py for
details on what each of the options does.

	discretize_continuous – if True, all non-categorical features will
be discretized into quartiles.

	discretizer – only matters if discretize_continuous is True. Options
are ‘quartile’, ‘decile’ or ‘entropy’

	
static convert_and_round(values)

	

	
explain_instance(data_row, predict_fn, labels=(1,), top_labels=None, num_features=10, num_samples=5000, distance_metric='euclidean', model_regressor=None)

	Generates explanations for a prediction.

First, we generate neighborhood data by randomly perturbing features
from the instance (see __data_inverse). We then learn locally weighted
linear models on this neighborhood data to explain each of the classes
in an interpretable way (see lime_base.py).

	Parameters:	
	data_row – 1d numpy array, corresponding to a row

	predict_fn – prediction function. For classifiers, this should be a
function that takes a numpy array and outputs prediction
probabilities. For regressors, this takes a numpy array and
returns the predictions. For ScikitClassifiers, this is

classifier.predict_proba(). For ScikitRegressors, this
is regressor.predict().

	labels – iterable with labels to be explained.

	top_labels – if not None, ignore labels and produce explanations for
the K labels with highest prediction probabilities, where K is
this parameter.

	num_features – maximum number of features present in explanation

	num_samples – size of the neighborhood to learn the linear model

	distance_metric – the distance metric to use for weights.

	model_regressor – sklearn regressor to use in explanation. Defaults

	Ridge regression in LimeBase. Must have model_regressor.coef (to) –

	'sample_weight' as a parameter to model_regressor.fit() (and) –

	Returns:	An Explanation object (see explanation.py) with the corresponding
explanations.

	
class lime.lime_tabular.RecurrentTabularExplainer(training_data, training_labels=None, feature_names=None, categorical_features=None, categorical_names=None, kernel_width=None, verbose=False, class_names=None, feature_selection='auto', discretize_continuous=True, discretizer='quartile')

	Bases: lime.lime_tabular.LimeTabularExplainer

An explainer for keras-style recurrent neural networks, where the
input shape is (n_samples, n_timesteps, n_features). This class
just extends the LimeTabularExplainer class and reshapes the training
data and feature names such that they become something like

(val1_t1, val1_t2, val1_t3, ..., val2_t1, ..., valn_tn)

Each of the methods that take data reshape it appropriately,
so you can pass in the training/testing data exactly as you
would to the recurrent neural network.

	Parameters:	
	training_data – numpy 3d array with shape
(n_samples, n_timesteps, n_features)

	training_labels – labels for training data. Not required, but may be
used by discretizer.

	feature_names – list of names (strings) corresponding to the columns
in the training data.

	categorical_features – list of indices (ints) corresponding to the
categorical columns. Everything else will be considered
continuous. Values in these columns MUST be integers.

	categorical_names – map from int to list of names, where
categorical_names[x][y] represents the name of the yth value of
column x.

	kernel_width – kernel width for the exponential kernel.

	None, defaults to sqrt (If) –

	verbose – if true, print local prediction values from linear model

	class_names – list of class names, ordered according to whatever the
classifier is using. If not present, class names will be ‘0’,
‘1’, ...

	feature_selection – feature selection method. can be
‘forward_selection’, ‘lasso_path’, ‘none’ or ‘auto’.
See function ‘explain_instance_with_data’ in lime_base.py for
details on what each of the options does.

	discretize_continuous – if True, all non-categorical features will
be discretized into quartiles.

	discretizer – only matters if discretize_continuous is True. Options
are ‘quartile’, ‘decile’ or ‘entropy’

	
explain_instance(data_row, classifier_fn, labels=(1,), top_labels=None, num_features=10, num_samples=5000, distance_metric='euclidean', model_regressor=None)

	Generates explanations for a prediction.

First, we generate neighborhood data by randomly perturbing features
from the instance (see __data_inverse). We then learn locally weighted
linear models on this neighborhood data to explain each of the classes
in an interpretable way (see lime_base.py).

	Parameters:	
	data_row – 2d numpy array, corresponding to a row

	classifier_fn – classifier prediction probability function, which
takes a numpy array and outputs prediction probabilities. For
ScikitClassifiers , this is classifier.predict_proba.

	labels – iterable with labels to be explained.

	top_labels – if not None, ignore labels and produce explanations for
the K labels with highest prediction probabilities, where K is
this parameter.

	num_features – maximum number of features present in explanation

	num_samples – size of the neighborhood to learn the linear model

	distance_metric – the distance metric to use for weights.

	model_regressor – sklearn regressor to use in explanation. Defaults
to Ridge regression in LimeBase. Must have
model_regressor.coef_ and ‘sample_weight’ as a parameter
to model_regressor.fit()

	Returns:	An Explanation object (see explanation.py) with the corresponding
explanations.

	
class lime.lime_tabular.TableDomainMapper(feature_names, feature_values, scaled_row, categorical_features, discretized_feature_names=None)

	Bases: lime.explanation.DomainMapper

Maps feature ids to names, generates table views, etc

Init.

	Parameters:	
	feature_names – list of feature names, in order

	feature_values – list of strings with the values of the original row

	scaled_row – scaled row

	categorical_features – list of categorical features ids (ints)

	
map_exp_ids(exp)

	Maps ids to feature names.

	Parameters:	exp – list of tuples [(id, weight), (id,weight)]

	Returns:	list of tuples (feature_name, weight)

	
visualize_instance_html(exp, label, div_name, exp_object_name, show_table=True, show_all=False)

	Shows the current example in a table format.

	Parameters:	
	exp – list of tuples [(id, weight), (id,weight)]

	label – label id (integer)

	div_name – name of div object to be used for rendering(in js)

	exp_object_name – name of js explanation object

	show_table – if False, don’t show table visualization.

	show_all – if True, show zero-weighted features in the table.

lime.lime_text module

Functions for explaining text classifiers.

	
class lime.lime_text.IndexedString(raw_string, split_expression=u'\W+', bow=True)

	Bases: object

String with various indexes.

Initializer.

	Parameters:	
	raw_string – string with raw text in it

	split_expression – string will be split by this.

	bow – if True, a word is the same everywhere in the text - i.e. we
will index multiple ocurrences of the same word. If False,
order matters, so that the same word will have different ids
according to position.

	
inverse_removing(words_to_remove)

	Returns a string after removing the appropriate words.

If self.bow is false, replaces word with UNKWORDZ instead of removing
it.

	Parameters:	words_to_remove – list of ids (ints) to remove

	Returns:	original raw string with appropriate words removed.

	
num_words()

	Returns the number of tokens in the vocabulary for this document.

	
raw_string()

	Returns the original raw string

	
string_position(id_)

	Returns a np array with indices to id_ (int) ocurrences

	
word(id_)

	Returns the word that corresponds to id_ (int)

	
class lime.lime_text.LimeTextExplainer(kernel_width=25, verbose=False, class_names=None, feature_selection=u'auto', split_expression=u'\W+', bow=True)

	Bases: object

Explains text classifiers.
Currently, we are using an exponential kernel on cosine distance, and
restricting explanations to words that are present in documents.

Init function.

	Parameters:	
	kernel_width – kernel width for the exponential kernel

	verbose – if true, print local prediction values from linear model

	class_names – list of class names, ordered according to whatever the
classifier is using. If not present, class names will be ‘0’,
‘1’, ...

	feature_selection – feature selection method. can be
‘forward_selection’, ‘lasso_path’, ‘none’ or ‘auto’.
See function ‘explain_instance_with_data’ in lime_base.py for
details on what each of the options does.

	split_expression – strings will be split by this.

	bow – if True (bag of words), will perturb input data by removing
all ocurrences of individual words. Explanations will be in
terms of these words. Otherwise, will explain in terms of
word-positions, so that a word may be important the first time
it appears and uninportant the second. Only set to false if the
classifier uses word order in some way (bigrams, etc).

	
explain_instance(text_instance, classifier_fn, labels=(1,), top_labels=None, num_features=10, num_samples=5000, distance_metric=u'cosine', model_regressor=None)

	Generates explanations for a prediction.

First, we generate neighborhood data by randomly hiding features from
the instance (see __data_labels_distance_mapping). We then learn
locally weighted linear models on this neighborhood data to explain
each of the classes in an interpretable way (see lime_base.py).

	Parameters:	
	text_instance – raw text string to be explained.

	classifier_fn – classifier prediction probability function, which
takes a list of d strings and outputs a (d, k) numpy array with
prediction probabilities, where k is the number of classes.
For ScikitClassifiers , this is classifier.predict_proba.

	labels – iterable with labels to be explained.

	top_labels – if not None, ignore labels and produce explanations for
the K labels with highest prediction probabilities, where K is
this parameter.

	num_features – maximum number of features present in explanation

	num_samples – size of the neighborhood to learn the linear model

	distance_metric – the distance metric to use for sample weighting,
defaults to cosine similarity

	model_regressor – sklearn regressor to use in explanation. Defaults

	Ridge regression in LimeBase. Must have model_regressor.coef (to) –

	'sample_weight' as a parameter to model_regressor.fit() (and) –

	Returns:	An Explanation object (see explanation.py) with the corresponding
explanations.

	
class lime.lime_text.TextDomainMapper(indexed_string)

	Bases: lime.explanation.DomainMapper

Maps feature ids to words or word-positions

Initializer.

	Parameters:	indexed_string – lime_text.IndexedString, original string

	
map_exp_ids(exp, positions=False)

	Maps ids to words or word-position strings.

	Parameters:	
	exp – list of tuples [(id, weight), (id,weight)]

	positions – if True, also return word positions

	Returns:	list of tuples (word, weight), or (word_positions, weight) if
examples: (‘bad’, 1) or (‘bad_3-6-12’, 1)

	
visualize_instance_html(exp, label, div_name, exp_object_name, text=True, opacity=True)

	Adds text with highlighted words to visualization.

	Parameters:	
	exp – list of tuples [(id, weight), (id,weight)]

	label – label id (integer)

	div_name – name of div object to be used for rendering(in js)

	exp_object_name – name of js explanation object

	text – if False, return empty

	opacity – if True, fade colors according to weight

lime.discretize module

Discretizers classes, to be used in lime_tabular

	
class lime.discretize.BaseDiscretizer(data, categorical_features, feature_names, labels=None)

	Bases: object

Abstract class - Build a class that inherits from this class to implement
a custom discretizer.
Method bins() is to be redefined in the child class, as it is the actual
custom part of the discretizer.

Initializer
:param data: numpy 2d array
:param categorical_features: list of indices (ints) corresponding to the

categorical columns. These features will not be discretized.
Everything else will be considered continuous, and will be
discretized.

	Parameters:	
	categorical_names – map from int to list of names, where
categorical_names[x][y] represents the name of the yth value of
column x.

	feature_names – list of names (strings) corresponding to the columns
in the training data.

	
bins(data, labels)

	To be overridden
Returns for each feature to discretize the boundaries
that form each bin of the discretizer

	
discretize(data)

	Discretizes the data.
:param data: numpy 2d or 1d array

	Returns:	numpy array of same dimension, discretized.

	
undiscretize(data)

	

	
class lime.discretize.DecileDiscretizer(data, categorical_features, feature_names, labels=None)

	Bases: lime.discretize.BaseDiscretizer

	
bins(data, labels)

	

	
class lime.discretize.EntropyDiscretizer(data, categorical_features, feature_names, labels=None)

	Bases: lime.discretize.BaseDiscretizer

	
bins(data, labels)

	

	
class lime.discretize.QuartileDiscretizer(data, categorical_features, feature_names, labels=None)

	Bases: lime.discretize.BaseDiscretizer

	
bins(data, labels)

	

lime.explanation module

Explanation class, with visualization functions.

	
class lime.explanation.DomainMapper

	Bases: object

Class for mapping features to the specific domain.

The idea is that there would be a subclass for each domain (text, tables,
images, etc), so that we can have a general Explanation class, and separate
out the specifics of visualizing features in here.

	
map_exp_ids(exp, **kwargs)

	Maps the feature ids to concrete names.

Default behaviour is the identity function. Subclasses can implement
this as they see fit.

	Parameters:	
	exp – list of tuples [(id, weight), (id,weight)]

	kwargs – optional keyword arguments

	Returns:	list of tuples [(name, weight), (name, weight)...]

	Return type:	exp

	
visualize_instance_html(exp, label, div_name, exp_object_name, **kwargs)

	Produces html for visualizing the instance.

Default behaviour does nothing. Subclasses can implement this as they
see fit.

	Parameters:	
	exp – list of tuples [(id, weight), (id,weight)]

	label – label id (integer)

	div_name – name of div object to be used for rendering(in js)

	exp_object_name – name of js explanation object

	kwargs – optional keyword arguments

	Returns:	js code for visualizing the instance

	
class lime.explanation.Explanation(domain_mapper, mode=u'classification', class_names=None)

	Bases: object

Object returned by explainers.

Initializer.

	Parameters:	
	domain_mapper – must inherit from DomainMapper class

	type – “classification” or “regression”

	class_names – list of class names (only used for classification)

	
as_html(labels=None, predict_proba=True, show_predicted_value=True, **kwargs)

	Returns the explanation as an html page.

	Parameters:	
	labels – desired labels to show explanations for (as barcharts).
If you ask for a label for which an explanation wasn’t
computed, will throw an exception. If None, will show
explanations for all available labels. (only used for classification)

	predict_proba – if true, add barchart with prediction probabilities
for the top classes. (only used for classification)

	show_predicted_value – if true, add barchart with expected value
(only used for regression)

	kwargs – keyword arguments, passed to domain_mapper

	Returns:	code for an html page, including javascript includes.

	
as_list(label=1, **kwargs)

	Returns the explanation as a list.

	Parameters:	
	label – desired label. If you ask for a label for which an
explanation wasn’t computed, will throw an exception.
Will be ignored for regression explanations.

	kwargs – keyword arguments, passed to domain_mapper

	Returns:	list of tuples (representation, weight), where representation is
given by domain_mapper. Weight is a float.

	
as_map()

	Returns the map of explanations.

	Returns:	Map from label to list of tuples (feature_id, weight).

	
as_pyplot_figure(label=1, **kwargs)

	Returns the explanation as a pyplot figure.

Will throw an error if you don’t have matplotlib installed
:param label: desired label. If you ask for a label for which an

explanation wasn’t computed, will throw an exception.
Will be ignored for regression explanations.

	Parameters:	kwargs – keyword arguments, passed to domain_mapper

	Returns:	pyplot figure (barchart).

	
available_labels()

	Returns the list of classification labels for which we have any explanations.

	
save_to_file(file_path, labels=None, predict_proba=True, show_predicted_value=True, **kwargs)

	Saves html explanation to file. .

	Params:

	file_path: file to save explanations to

See as_html() for additional parameters.

	
show_in_notebook(labels=None, predict_proba=True, show_predicted_value=True, **kwargs)

	Shows html explanation in ipython notebook.

See as_html() for parameters.
This will throw an error if you don’t have IPython installed

	
lime.explanation.id_generator(size=15)

	Helper function to generate random div ids. This is useful for embedding
HTML into ipython notebooks.

lime.lime_base module

Contains abstract functionality for learning locally linear sparse model.

	
class lime.lime_base.LimeBase(kernel_fn, verbose=False)

	Bases: object

Class for learning a locally linear sparse model from perturbed data

Init function

	Parameters:	
	kernel_fn – function that transforms an array of distances into an
array of proximity values (floats).

	verbose – if true, print local prediction values from linear model.

	
explain_instance_with_data(neighborhood_data, neighborhood_labels, distances, label, num_features, feature_selection='auto', model_regressor=None)

	Takes perturbed data, labels and distances, returns explanation.

	Parameters:	
	neighborhood_data – perturbed data, 2d array. first element is
assumed to be the original data point.

	neighborhood_labels – corresponding perturbed labels. should have as
many columns as the number of possible labels.

	distances – distances to original data point.

	label – label for which we want an explanation

	num_features – maximum number of features in explanation

	feature_selection – how to select num_features. options are:
‘forward_selection’: iteratively add features to the model.

This is costly when num_features is high

	‘highest_weights’: selects the features that have the highest

	product of absolute weight * original data point when
learning with all the features

	‘lasso_path’: chooses features based on the lasso

	regularization path

‘none’: uses all features, ignores num_features
‘auto’: uses forward_selection if num_features <= 6, and

‘highest_weights’ otherwise.

	model_regressor – sklearn regressor to use in explanation.
Defaults to Ridge regression if None. Must have
model_regressor.coef_ and ‘sample_weight’ as a parameter
to model_regressor.fit()

	Returns:	intercept is a float.
exp is a sorted list of tuples, where each tuple (x,y) corresponds
to the feature id (x) and the local weight (y). The list is sorted
by decreasing absolute value of y.
score is the R^2 value of the returned explanation

	Return type:	(intercept, exp, score)

	
feature_selection(data, labels, weights, num_features, method)

	Selects features for the model. see explain_instance_with_data to
understand the parameters.

	
static forward_selection(data, labels, weights, num_features)

	Iteratively adds features to the model

	
static generate_lars_path(weighted_data, weighted_labels)

	Generates the lars path for weighted data.

	Parameters:	
	weighted_data – data that has been weighted by kernel

	weighted_label – labels, weighted by kernel

	Returns:	(alphas, coefs), both are arrays corresponding to the
regularization parameter and coefficients, respectively

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lime	

 	
 	
 lime.discretize	

 	
 	
 lime.explanation	

 	
 	
 lime.lime_base	

 	
 	
 lime.lime_tabular	

 	
 	
 lime.lime_text	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	as_html() (lime.explanation.Explanation method)

 	as_list() (lime.explanation.Explanation method)

 	
 	as_map() (lime.explanation.Explanation method)

 	as_pyplot_figure() (lime.explanation.Explanation method)

 	available_labels() (lime.explanation.Explanation method)

B

 	
 	BaseDiscretizer (class in lime.discretize)

 	bins() (lime.discretize.BaseDiscretizer method)

 	(lime.discretize.DecileDiscretizer method)

 	(lime.discretize.EntropyDiscretizer method)

 	(lime.discretize.QuartileDiscretizer method)

C

 	
 	convert_and_round() (lime.lime_tabular.LimeTabularExplainer static method)

D

 	
 	DecileDiscretizer (class in lime.discretize)

 	
 	discretize() (lime.discretize.BaseDiscretizer method)

 	DomainMapper (class in lime.explanation)

E

 	
 	EntropyDiscretizer (class in lime.discretize)

 	explain_instance() (lime.lime_tabular.LimeTabularExplainer method)

 	(lime.lime_tabular.RecurrentTabularExplainer method)

 	(lime.lime_text.LimeTextExplainer method)

 	
 	explain_instance_with_data() (lime.lime_base.LimeBase method)

 	Explanation (class in lime.explanation)

F

 	
 	feature_selection() (lime.lime_base.LimeBase method)

 	
 	forward_selection() (lime.lime_base.LimeBase static method)

G

 	
 	generate_lars_path() (lime.lime_base.LimeBase static method)

I

 	
 	id_generator() (in module lime.explanation)

 	
 	IndexedString (class in lime.lime_text)

 	inverse_removing() (lime.lime_text.IndexedString method)

L

 	
 	lime.discretize (module)

 	lime.explanation (module)

 	lime.lime_base (module)

 	lime.lime_tabular (module)

 	
 	lime.lime_text (module)

 	LimeBase (class in lime.lime_base)

 	LimeTabularExplainer (class in lime.lime_tabular)

 	LimeTextExplainer (class in lime.lime_text)

M

 	
 	map_exp_ids() (lime.explanation.DomainMapper method)

 	(lime.lime_tabular.TableDomainMapper method)

 	(lime.lime_text.TextDomainMapper method)

N

 	
 	num_words() (lime.lime_text.IndexedString method)

Q

 	
 	QuartileDiscretizer (class in lime.discretize)

R

 	
 	raw_string() (lime.lime_text.IndexedString method)

 	
 	RecurrentTabularExplainer (class in lime.lime_tabular)

S

 	
 	save_to_file() (lime.explanation.Explanation method)

 	
 	show_in_notebook() (lime.explanation.Explanation method)

 	string_position() (lime.lime_text.IndexedString method)

T

 	
 	TableDomainMapper (class in lime.lime_tabular)

 	
 	TextDomainMapper (class in lime.lime_text)

U

 	
 	undiscretize() (lime.discretize.BaseDiscretizer method)

V

 	
 	visualize_instance_html() (lime.explanation.DomainMapper method)

 	(lime.lime_tabular.TableDomainMapper method)

 	(lime.lime_text.TextDomainMapper method)

W

 	
 	word() (lime.lime_text.IndexedString method)

 nav.xhtml

 Table of Contents

 		Local Interpretable Model-Agnostic Explanations (lime)

 		lime package

 		Submodules

 		lime.lime_tabular module

 		lime.lime_text module

 		lime.discretize module

 		lime.explanation module

 		lime.lime_base module

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

